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An Iterative Phase-Only Nulling Method

1. INTRODUCTION

In a recent report we investigated in some detail the problem of perturbing a

given set of array element weights to impose nulls in the pattern at specified loca-

tions. Two types of perturbations were examined: perturbations of both the ampli-

tudes and phases of the element coefficients, and perturbations of the phases alone.

When both the amplitudes and the phases of the weights are allowed to vary, the

requirement of nulls at the specified locations in the pattern leads to a system of

linear equations for the weight perturbations which can be solved exactly subject to an

additional constraint involving minimization of the perturbations. If only the phases of

the element coefficients are allowed to vary, the system of equations for the imposed

nulls in the pattern is non-linear and cannot be solved exactly. Under the assump-

tion that the phase perturbations are small, however, the system of equations for

the nulls can be linearized and then solved in the same way as the equations for com-

bined amplitude and phase perturbations. Because of the approximation involved in

the linearization, the resulting phase perturbations do not give perfect nulls as do

the combined amplitude and phase perturbations. The depth of null obtained depends

on how well the small angle approximation used to linearize the equations for the

(Received for publication 18 February 1982)

1. Shore, R.A., and Steyskal, H.P. (1982) Nulling in Linear Array Patterns With
Minimization of Weight Perturbations. RADC-TR-82-32.
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nulls is actually satisfied by the solutions to the linearized equations. It was found
that, even for a low sidelobe array in which the linearized phase-only nulling pro-

cedure gave reasonably deep nulls for one or two constrained null locations, the
effectiveness of cancellation in a sector of the pattern achieved with phase-only
nulling deteriorated as the size of the sector was increased by adding equispaced
null locations. This behavior contrasted sharply with that found when combined
amplitude and phase perturbations were used. The combination resulted in increas-
ingly effective cancellation throughout a sector as the width of the sector was in-

creased by adding more nulls.
The failure of the linearized phase-only nulling procedure to give a satisfactory

solution to the nulling problem for several closely spaced nulls, even in a low side-
lobe structure, makes it of interest to consider alternate procedures for solving

the phase-only nulling problem. In this report, I describe a simple scheme of
phase-only nulling in which the linearization procedure is used iteratively. This

scheme is found to be extremely effective in low sidelobe structures although it fails
to work as a general method. The method is described in the next section. Some
numerical results are then presented, comparing the iterative phase-only nulling
method with the simple (that is, non-iterative) linearization method and with nulling
using combined amplitude and phase perturbations.

2. ANALYSIS

Consider a linear array of equispaced isotropic elements (Figure 1). The
spacing between the elements is d and the phase reference center is assumed to be

the center of the array. Let w n , n = 1, 2 ... , N, be the complex weight of the nt h

array element. Then the array field pattern, p(u) is
Np~u)= w jdn u

n=l 1

where

N- 1
d (n- 1), n= 1,2, "

and

u = kd sin 0

with
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k=

and 0 the angle measured from broadside to the array. Note that the dn are odd
symmetric with respect to the phase reference center; that is,

dn d N-n+1

0 Figure 1. Geometry of Array
I I

N N-I N-2 0 3 2 I

The general problem in which we are interested is as follows. Let
an- n= 1. 2, ... , N, be a given taper, assumed to be symmetric with respect to the

phase reference center, of the amplitudes of the element excitations, and let us be
the direction for the peak of the array pattern. Then the array coefficients are

-j dn us

= a e , n= 1, 2, ... , N
nn

We wish to find the set of perturbations, *n- n= 1, 2, .... N of the phases of the

element weights that will (a) result in a perturbed pattern with nulls at a set of

prescribed locations, uk. k= 1, 2, .... M, and (b) be "as small as possible. " What

does it mean to be "as small as possible?" The perturbed coefficients are

w = a e ns eWn n

= an e J d n u s + an e d n u s (e -1). (l)

The first term on the RHS of Eq. (1) is the original weight, and the second term is

the total perturbation of the weight. Following Reference 1, the discussion will

consider two forms of minimizing the perturbations. The first is to minimize

N N
~I en 2 (
le 12 4 , sin2 ('n

n= I n= I
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and the second is to minimize

N ieon )2 N[ n)] 2

The first form corresponds to minimizing the perturbations relative to the original

weights, while the second corresponds to minimizing the total perturbations.

From Eq. (1) it follows that we can represent the perturbed array pattern as
N -jd u jo jd u

p(u) = p0 (u) + an e ns (e n - )
n=1

where p0 (u) is the original array patternN
N jd u jd u

P (u)== 1 an e-ns e

Hence the equation system for the nulls is

a eid nu (e in - ) ej  = - PO(uk) k= 1,2,.. M . (2)
n= n

Separating the real and imaginary parts of Eq. (2) we obtain
N

a os[dn(UsUk) -0n 0 (3a)
n= In n

N k= 1,2,. M.

n an sin[d(U-Uk) -n 0 (3b)

The problem can then be stated as follows: find the set of phase perturbationS,

O n= 1,2. N, that satisfy the equation system (3) and that minimize either

sin2 ( 1) (4a)

n= I

N a nl n sit -2) 1 (4 b)



This problem is an example of what is known in the operations research litera-

ture as a nonlinear programming problem (see for example References 2 and 3).

The problem in general has no exact solution. Furthermore, it is not at all obvious

that the equation system for the nulls has any solution at all and indeed an example

can easily be found when it does not (consider an array with an odd number of

elements for which the amplitude of the central element is greater than the sum of

all the other amplitudes). However, we will not attempt here to answer the question

of under what circumstances solutions exist to Eqs. (3). Rather, we will simply

assume that the given amplitude distribution is such that the equation system for

the 0 n is underdetermined if 2M < N, that it has an infinity of possible solutions,
and that a minimization criterion is used to select a particular one of these solutions.

Since an explicit solution to the problem cannot be found, an efficient numerical

method for finding the solution is desired.

The scheme we propose here is based on the assumption that the sidelobes of

the original pattern are sufficiently low that only small phase perturbations are

required to place nulls at the specified locations. Under this assumption we can

expand Eqs. (3a, 3b) and neglect all terms quadratic and higher in 0n thus obtaining

N

a -Q an sin [dn (us  u k) Po(uk (5a)
n= I

N k= 1,2 .... .u

a nQc1,nCos t' (U - uk 0 (5b)
n-l

Lnder the same assumption of small n the functions to be minimized can be approxi-

mated by

N S 2 (6 a)
n= I 1'

and

N Z n)2
(a 1 (6b)

n=l '

We have written 0 1, n instead of On here, not only to indicate that the solution to

Eqs. (5) is an approximation to the solution to Eqs. (3) we are seeking, but also,

as will be seen shortly, because the Oi n are to be the first stage in an iterative

process leading to the desired solution.

2. Himmelblau, D. M. (1972) Applied Nonlinear Programming, McGraw-Hill, NewYork.

3. Schittkowski, K. (1980) .Nonlinear Programming Codes, Springer-Verlag, New York.
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The solution to Eq. (5a) that minimizes Eq. (6a) or Eq. (6b) was found in our

earlier report and the result is merely stated here: let

N

a -- min
cn 1 (7)

N

1, E (an 1n)2  min,
n=l1

2
ct = n (8)

n N

n= 1

and

T

y = - [P(U ), p(U 2 , " ' Po(Um)]

then

2t M
2tn= E b sin [d (u -u () (9)l,n an  m= M n m

where the vector of coefficients bm is obtained by inverting the matrix equation

A b=

with the elements of the matrix A given by

N

[A]km = E 2tn sin [ (Us-uk)] sin[dn (us -u)] k,m 1.2. Akm n n= 1r) ~ , ..

Equation (5b) is automatically satisfied by this solution because of the antisymmetry

of the 01. n with respect to the phase reference center. The weights corresponding
to the phase perturbations 7 ln are

-JdnUs eJ~ln

Wl,n = a n e

and the array pattern is then
N

pl(u) = w, enn= I n

10



Now, if the phase perturbations €1, n are fairly good approximations to the

desired perturbations qn . then the values of pI(u) at the specified null locations

u = uk , k = 1, 2,. ... , will be smaller in magnitude than the original values

po(uk). Hence it is reasonable to suppose that the coefficients w1 , n can be per-

turbed in turn with a set of still smaller phase perturbations so as to place nulls in

the pattern at the specified locations. This idea leads us to the following iterative
45

scheme, similar to that used by Cheng and Raymond, and by Cheng. Let the

weights at the end of thei t h iteration, i -> 1, be

-Jdnus ej1 i n
w. na e 1 n= 2,2 ...... N1, n n

and the corresponding array pattern

N jd u

pi(u) w. ei nu
n = 1

For 1 = 0, define

On- 0
Po. n =

oj dn usw --- a e
*-o,n n

Let Oi+ 1, n - 0in be the phase perturbation introduced at the (i+ 1) iteration,
i -> 0. Then similarly to Eqs. (5a and 5b), we have

N
E a n(Oi+ ,,n- i, n) sin [d n (u - U k) - Oi, = - Pi (uk)
n= 1

N a"[ k= 1,2, ....

, an( ( i + ln -0i,n)c s d n (us - uk)- Oi,n ]  0n=l

or

4. Cheng, D.K., and Raymond. Jr., P.D. (1971) Optimization of array directivity
by phase adjustments, Electron. Letts. L:552-554.

5. Cheng, S.D. (1971) Optimization techniques for antenna arrays, Proc. IEEE.
90:1664-1674.
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N

anoi+ 1,n sindn (us - Uk) - 0 n] = - Pi(uk)

n= 1

+ E n0i, n sin[d (u - Uk) - i (10a)

N N

n= ni+ 1,n cosldn (us - U k- n1 = n n o.n cosfdn (u - Uk) - i n]

(10b)

The functions to be minimized are
N

n= I i+ 1, 1

or,

N
E (a 2

n= I i+l'n

Eqs. (10a and 10b) are of the same form as Eqs. (5a and 5b) except for the RHS of

Eq. (10b). But because of the antisymmetrv of the 0 1 noted above, the RHS of

Eq. (10b) is zero when i= 1, and hence bY induction the same will be true for succeed-

ing iterations as well. Thus, similarl.v to Eq. (9), the 0i+ Ill are given by

M
2 'E sin d (uA - )- . n.

i+ 1,n n bi+ 1.m [ n s m Oi, n"
n M=lI

The vector of (oefficients bi+ is obtained by inverting the matrix equation*1 ~I+,m

i i+ I bi+ 1 = Li+ 1 (12)

where

N

+ I =  n= Pi(U I nE a ni, nsin[d (U -u s i, Pi(UM

N T

E anqi.n sin[dn(us u M )  U in)] (13)
n= I

12



and the elements of the matrix A. are given by

-. I+
N

I~~~ ~ + n n, nl2tindUs -Uk) - Oi, n] inn(us -urn) - i n ' " ( 4

Testing for convergence and termination of the iterative procedure can be based

either on the phase perturbations themselves (for example. termination when

max I <E or when E lI <-I) or on then 10 i+1,n in) 1i+1n -in

values of the beam coefficients. That convergence of the phase perturbations implies

convergence of the beam coefficients follows easily from Eq. (12) in conjunction with

Eqs. (13) and (14). since

-+ A, + +

and Ai+ 1 and yi+ 1 approach limiting values if the 0i, n converge to limiting values

n•

It is also worth noting that if the limiting values of the phase perturbations are

small, the resulting cancellation pattern can be interpreted as the sum of pairs of

slightly distorted beams, one pair for each imposed null, in a way that is completely

analogous to the interpretation of the non-iterative phase-only cancellation pattern

as the sum of pairs of beams (see Reference 1). For from Eq. (11), we see that if

the 0 i, n converge to limiting values On, then

2t
On- = n E b sin[dn (us - u - on. (15)

n rnI 1)l

th

Also, from Eq. (1), if o n is small then the change in the n weight can be approxi-

mated by

a _j d n u s  (16)A w =an e (e j  -I1)

-j d u
n s

Jano n e 116)

so that, substituting Eq. (15) in Eq. (16),

M m dnu {I j[dn(us -u.)-bn -jd n (u s -u) - 0n ]
Aw t b m e-n s e JdnUs m e m

m= I

13



and hence the cancellation pattern is given approximately by

M E j'd (u-un) _n)' J[d n(u- 1 2 uus _ur + On]

Ap(u) b nm= m tI nedn(U 1e

If the phase perturbations, *n" were zero, the cancellation pattern would thus be

represented as the sum of M pairs of beams, one member of each pair directed at

an imposed null location, and the other member, of opposite sign, directed at the

symmetric location with respect to the axis of the mainlobe of the original pattern.

Indeed, this is the approximate representation of the cancellation pattern for the

noniterative phase-only nulling scheme (see Reference 1). If the phase perturbations

are non-zero but small, it is to be expected that the phase perturbations introduce

a small amount of distortion in the shape of the component beams but that the beams

representation of the cancellation pattern still holds. Hence, for small perturba-

tions, the limiting values of the beam coefficients obtained with the iterative nulling

method will not differ greatly from the values of the coefficients obtained with the

noniterative nulling scheme. As with the non-iterative method, the nulls produced

at the prescribed locations will be accompanied by a comparable raising of the

pattern at the symmetric locations with respect to the mainlobe axis.

If the iterative procedure converges, the limiting values of the i, n should

satisfy the system of Eqs. (3) for the pattern nulls. If the limiting values are small

they should also be reasonable approximations to the values of the n that not only

satisfy Eqs. (3) but which also minimize either expression (4a) or (4b). Further

work is needed, however, to obtain a quantitative estimate on how close the limiting

values of the Oi,n will be to the ideal solution. A direct comparison of the values

obtained by a more powerful non-linear programming method with the values ob-

tained here, would, of course, serve this purpose. The solution obtained by the

iterative scheme proposed here has value not only because it provides a useful

approximation to the desired answer, but also because it can serve as a starting

point for further refinement by a more powerful non-linear optimization method.

Such methods often must be started at a feasible solution-that is, a solution to the

(onstraint equations.

On first glance it might appear that the solution to Eqs. (3) that minimizes, say

2 also minimizes (4a). For if we let I t~nj be the set of phase perturbations that

satisfy Eqs. (3) and minimize (4a), and ICn} be the set of phase perturbations

that satisfy Eqs. (3) and minimize J 2 then the I1P and must satisfy the

following set of inequalities, assuming 0 < I0 n IT/2, 0 < tikn < 77/2:

14



3. NUMERICAL RESULTS

A computer program was written to implement the iterative nulling scheme

described in the previous section, and run on a CDC 6600 computer. All computa-
tions were performed for an array with 41 elements with half wavelength spacing.

Unless otherwise stated, the original or unperturbed pattern corresponds to a

40 dB Chebyshev taper of the element excitations. Figure 2 shows results obtained

when the iterative program was run to impose nulls at one (15. 230), two (15. 230.

15. 780), three (15. 230, 15.78%, 16. 33°). and four (15. 23', 15. 780, 16. 33' , 16.880)
locations. We have plotted the maximum of the values of the perturbed pattern power

at the locations at which nulls were desired (that is, the least deep null) vs number

of iterations. Figure 2a gives the results obtained when 1 (an On)2 was minimized,

N N N N
2~ 4~n V .2 (on 2 1: 24 E sin 4-- , sin (--)< E - n (t

n=1n n 1 n n= I

If in general

N N N NE 12 > 2 2 %n 2Onn4 P sin2 1- F sin2 (-7
4 n I = [n I n= I

as it does when N= 1, it would follow that the first "<" in Eq. (t) must be strictly

Unfortunately this is not true, as can be seen by letting 1P,= 1+E , 'n = 0, n> 1

1n 1/ n= 1.2 .... N. We then have, for 0<E < 1, AE t2> n 0 2 and
On-sin 2 ) sin 2  (1/2)= 0.230

but

N
2 1sin > N ) = T > 0. 240

forN> 1.

15



and Figure 2b gives the results corresponding to minimizing Eon' The starting

point of all curves isthe maximum value of the power of the original pattern at the

null locations. The value for one iteration is the least null depth achieved with the

simple (that is, non-iterative) linearized nulling procedure that coincides with the

first step of the iterative procedure. We see that in all cases the iterative procedure

gives null depths (< -250 dB) that greatly exceed the null depths obtained with the

non-iterative nulling procedure. As a number of null locations increases, however,

more iterations are required to achieve the same depth of null. There is also a

tendency (as is shown, for example, in the four-null curve of Figure 2b) for the

maximum depth of null achievable by the iterative procedure to slowly decrease as

the number of null locations increases.

NUMBER OF ITERATIONS

0 1 2 3 4 5 6 7 8 0 I 2 3 4 5 6 7 B 9 10 II 12

-I00

3

1 2

4-250 -

-300 -

(a) (b

Figure 2. Maximum of Perturbed Pattern Power at Imposed
Null Locations for 1, 2, 3 and 4 Nulls as a Function of
Number of Iterations. 40 dB Chebyshev amplitude taper.
Figure 2a: z(anen) 2 = min; Figure 2b: X-n = min

Figure 3 shows corresponding results obtained starting with a 20 dB Chebyshev

taper of the element excitations, when the iterative program was run to impose nulls

at one (14.700), two (14.70 0 , 15. 280), three (14.70, 1528, 15.86°), and four

(14. 70', 15. 28% 15. 860, and 16. 440) locations. We see that for both minimization

criteria the Iterative procedure was able to produce deep nulls for the one and two

16



null cases, although considerably more iterations were required compared with the

40 dB calculations of Figure 2. (Note the curious feature of Figure 3b in which

fewer iterations were required for the two-null case than for the one-null case.

For three nulls, the iterative procedure was ineffective for the case of minimizing

(a but worked well for the case Lizing . For four nulls, the

iterative procedure was unable to achieve any nulling for either minimization cri-

terion. These results point out the limitations of the iterative method when the

sidelobes of the original pattern are relatively high. The phase perturbations re-

quired to produce nulls in the pattern are then larger in magnitude than they are for

low sidelobe patterns, especially when multiple closely spaced nulls are prescribed.

with the result that the iterative procedure (consisting of repeated linearizations

based on the assumption of small phase perturbations) fails to work.

NUBER OF ITERATIONS
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 18 20

4 
4

3t0-50-

-100 2 3

2
a -IS0

1200-

-250

-300

10) Wb

Figure 3. Maximum of Perturbed Pattern Power at
Imposed Null Locations for 1, 2, 3 and 4 Nulls as a
Function of Number of Iterations. 20 dB Chebyshev
amplitude taper 4 Figure 3a: x(a n) 2 = min;'
Figure 3b: X0 = min

As an application of the iterative nulling method calculations were performed

to study the variation of cancellation effectiveness within a sector of the pattern as

17



the width of the pattern is increased by adding equispaced nulls. As in our earlier

report the power cancellation ratio in the sector AO = 0 0 B 0 2 is defined

max (p(B)1
2

C = E AO

max (9)12
0 E Ae [(Po()

where p0 (0 ) is the original pattern and p(O ) is the perturbed pattern. In Table 1 we

have tabulated the cancellation ratios for various sector widths and different nulling

methods. The entries in the i t h row of the table are the cancellation ratios ob-

tained by the methods listed across the top of the table for the sector

15. 230 - 5 (0 2)i with nulls placed at 15. 230 and at the locations B = (Y j<- .

For example, the entry of -68. 0 dB in the fourth row for iterative phase-only nulling

minimizing E= (an 0n) 2 means that when nulls were imposed by this method at the

locations 15.23'. 15.78 ° , 16.330, 16.88, and 17. 440, the cancellation ratio in the

sector 15. 230 B S 17.440 was -68.0 dB. The sequence of null locations

15. 23, .. , 18. 00 ° is equispaced with respect to sinB. For comparison purposes

we have included in Table 1 not only the cancellation ratios obtained with the two

iterative phase-only nulling methods but also, taken from Reference 1, the cancella-

tion ratios obtained with the noniterative phase-only methods and the exact combined

amplitude and phase perturbation methods.

The outstanding feature of Table 1 is the remarkable improvement in cancella-

tion effectiveness resulting from the use of the iterative phase-only methods as com-

pared with the non-iterative phase-only methods. For six nulls, cancellation ratios

of -82 dB and -78 dB were obtained using the iterative methods as compared with

-1 dB for the non-iterative phase-only methods. This improvement is, of course,

attributable to the fact that the iterative methods are able to produce far deeper nulls

at the prescribed locations than are the non-iterative methods, with the result that

the entire pattern within the sector is pulled down much further. Indeed, the iterative

phase-only methods give sector cancellation comparable to the exact combined ampli-

tude and phase perturbation methods for all values of 02 through 17.44%0 For

0 2 = 18. 00, the iterative phase-only methods give slightly less effective sector can-

cellation than do the combined amplitude and phase perturbation methods. This is

probably attributable to the fact that, as noted above, the depth of null achievable by

the iterative methods slowly degrades as the number of imposed nulls increases.

For 0 2 = 18. 000 that is, six imposed nulls, the shallowest of the six nulls produced

by the iterative phase-only methods was -238 dB for minimized (an n) 2 and

-221dB for n.

18
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Even though the iterative phase-only methods studied in this report are not as

effective in certain multiple null situations and in high sidelobe applications as are

combined amplitude and phase perturbation methods, nevertheless it is important

to recognize that these limitations are not limitations so much of phase-only nulling

per se as they are of the particular iterative scheme proposed here. Based on the

results obtained and discussed in this report, it would appear that in many situations

phase-only methods are in principle as effective in nulling and sector cancellation

as are combined amplitude and phase perturbation methods. Further work is needed.

however, to refine the numerical procedures involved in phase-only nulling. The

principal drawback of phase-only nulling is that the nulls and sector cancellation

achieved on one side of the mainlobe of the original pattern are accompanied by a

comparable raising of the pattern at the locations and sectors symmetrically placed
with respect to the mainlobe. This, rather than limited nulling effectiveness,

appears to be the main price one pays for using phase-only nulling.

4. CONCLUSIONS

In this report, an iterative numerical method is described for calculating the

minimum phase-only perturbations of the element excitations of a linear array

required to impose nulls in the pattern at prescribed locations. The method is based

on repeated linearizations of the equations for the imposed nulls. The iterative

scheme is found to be extremely effective in low sidelobe applications when the re-

quired phase perturbations are small, but fails to work as a general method when

the required phase perturbations are large.
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